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Simultaneously Estimating the Fundamental
Matrix and Homographies

Pei Chen and David Suter, Senior Member, IEEE

Abstract—The estimation of the fundamental matrix (FM) and/or one
or more homographies between two views is of great interest for a number
of computer vision and robotics tasks. We consider the joint estimation of
the FM and one or more homographies. Given point matches between two
views (and assuming rigid geometry of the camera-scene displacement), it is
well known that all of the matched points satisfy the epipolar constraint that
is usually characterized by the FM. Subsets of these point matches may also
obey a constraint characterized by a homography (all matches in the subset
coming from three-dimensional (3-D) points lying on a 3-D plane). The
estimations of homographies and the FM are well-studied problems, and
therefore, the (separate) estimation of the FM, or the homography matrices,
can be considered as effectively solved problems with mature algorithms.
However, the homographies and FM are not independent of each other:
therefore, separate estimation of each is likely to be suboptimal. In this
paper, we propose to simultaneously estimate the FM and homographies
by employing the compatibility constraint between them. This is done by
first concentrating on a set of parameters that (jointly) parameterize the
entire set of homographies and FM (simultaneously) and that also implicitly
enforce the compatibility between the estimates of each set. We then derive
a reduced form with the purpose of improving the speed. We propose a
solution method in which the Sampson error for the FM and homographies
is minimized by the Levenberg–Marquardt (LM) algorithm. Experiments
show that the gains can be compared with separate estimates (the FM
and/or the homographies).

Index Terms—Compatibility, fundamental matrix, homography.

I. INTRODUCTION

Fundamental matrix (FM) estimation (or essential matrix estimation
for a calibrated camera1) and homography estimation are fundamental
problems in computer vision and robotics, so much so that one could
cite many potential applications. Here, however, we simply point to
those applications that particularly require high-quality homography
estimation in robotics ([2], [16]).

Being important problems, they have been extensively investigated
in [2], [5], [6], [9], [10], [11], [13]–[17], [22], [23], and [25]. Indeed,
the (separate) estimation of the FM or homographies is a mature tech-
nology. However, they are not independent from each other, and there
exists a compatibility constraint between the FM and homographies. A
sufficient and necessary condition [10], [14], for a homography H to
be compatible with the FM F , is that HT F is skew-symmetric, i.e.,

HT F + F T H = 0 (1)

which is referred to as the compatibility constraint.
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1We work on uncalibrated cameras in this paper, and therefore, we focus on

the FM.

If one separately estimates the FM and homographies from noisy
data, their compatibility cannot be ensured. This leads to suboptimal
estimation because the compatibility constraint can be utilized to po-
tentially improve the estimation accuracy.

Methods have been proposed to estimate homographies given the
FM, or vice versa, ensuring some degree of compatibility. For example,
given F , a compatible homography is estimated from three correspon-
dences [10]. Conversely, given H , the epipole e′ is estimated from
two correspondences that are not on the H-related plane, and then,
F = [e′]×H . Similar techniques are employed in other structure from
motion problems [12], [18], [19]. In [12], [18], and [19], the left 3 × 3
part of the projection matrices is first estimated from the homographies,
and then, the rightmost 3 × 1 vector of the projection matrices is esti-
mated. However, the approaches mentioned earlier are still suboptimal,
as they are essentially sequential.

There are other possible approaches to compatible estimates. For in-
stance, one can use the bundle adjustment (BA) algorithm [21] that tries
to simultaneously estimate projection matrices (principal parameters)
and three-dimensional (3-D) feature points (nuisance parameters). The
BA algorithm has a heavier computational burden than other algorithms
that only estimate the principal parameters, while hiding the nuisance
parameters [4]. The issue of computational inefficiency will be worse
when using the BA algorithm to estimate the FM and one or more
homographies because additional constraints have to be added to en-
force the planarity of the homography-related points, adding to the
computational complexity.

Our approach falls into the category of the method that only esti-
mates the principle parameters (i.e., the FM and homography matrices).
We utilize a particular parameterization form of homography matrix
and FM so that the compatibility condition (1) is implicitly satisfied. In
addition, we prove that for points on planes, the related homography
constraint implies the epipolar constraint when using such a param-
eterization form. Based on the above fact, we extend the Sampson
error [10], [20], [23], [24] to the case of simultaneously estimating the
FM and homographies. Thus, the parameters can be estimated by rou-
tine, unconstrained, optimization methods, for instance, the Levenberg–
Marquardt (LM) algorithm.

Related paper includes jointly estimating several homographies [3]
by exploiting the rank constraints. By employing the rank constraints,
the estimation accuracy of the homographies is improved, for example,
by approximately 20% in the cases of three or four planes. However,
there are limitations in the method described in [3]. First, it can only
be applied to at least three planes. Second, points on none of the planes
are not exploited (potentially, accuracy is improved by using more
data).

The rest of the paper is organized as follows. In Section II, we
propose to simultaneously estimate the FM and homographies: First, we
re-parameterize the FM and homographies so that their compatibility
is implicitly satisfied and that the redundancy among them is reduced.
Then, we use the LM algorithm to estimate the parameters, where the
Sampson error is to be minimized. Simulations and the real experiment
are presented in Section III.

II. SIMULTANEOUSLY ESTIMATING THE FUNDAMENTAL MATRIX

AND HOMOGRAPHIES

We use bold symbols (x and x′, for the points on the first and
second views, respectively) to denote the homogeneous representation
of 2-D features. d(x,y) denotes for the Euclidean distance between
inhomogeneous points represented by x and y, respectively.

1552-3098/$26.00 © 2009 IEEE



1426 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 6, DECEMBER 2009

A. Problem

Given the matches {xi} and {x′
i}, the estimation of the FM F

and one or more homographies {Hk }2 is to minimize the following
objective function:

Obj(F, {Hk }; {x̂i}, {x̂′
i}) =

∑
i

d2 (xi , x̂i ) + d2 (x′
i , x̂

′
i )

subject to ci (x̂i , x̂′
i ; F, {Hk }) = 0 (2)

where the constraint ci (x̂i , x̂′
i ; F, {Hk }) = 0 is either an epipolar con-

straint x̂′T
i F x̂i = 0 when the point is on none of the planes or jointly

an epipolar constraint x̂′T
i F x̂i = 0 and a homography constraint of

Hk x̂i ∼ x̂′
i when the ith point is on the kth plane (because a pair of

matches on one 3-D plane still satisfies the epipolar constraint.)
The constrained minimizer of (2) satisfies the compatibility con-

straint (1), although we show (next section) how this can be done
without its explicit inclusion as a formal constraint.

In (2), one has to find not only the homographies and the FM, but
the nuisance parameters {x̂i} and {x̂′

i} (in some sense, the optimally
corrected points—so that they are exactly consistent with the found
homographies and FM) as well. A direct solution for such a constrained
optimization problem, with nuisance parameters {x̂i} and {x̂′

i}, has a
very heavy computational burden [24].

B. Compatible Parameterization for FM and Homographies

We know from [10] that given the FM F , the three-parameter family
of homographies induced by a world plane is

H = A − e′v̄T (3)

where
[e′]×A = F (4)

is any decomposition of the FM.
The skew symmetric matrix associated with a three-vector a is de-

fined as

[a]× =

[
0 −a3 a2

a3 0 −a1

−a2 a1 0

]
.

Note that later, we will use the notation [a]×,2 ∈ R3 ,2 formed by tak-
ing two columns of [a]×, for example, the first two columns assuming
a3 
= 0 3. It holds that

[a]× = [a]×,2

[
1 0 −a1/a3

0 1 −a2/a3

]
(5)

By substituting, we see that H in (3) and F in (4) satisfy the com-
patibility condition (1).

Equations (3) and (4) suggest a BA-type approach, where these
parameters (A, e′, and v̄) are optimized (by LM, for example), using
any of the objective functions related to reprojection error. To the best
of our knowledge, no one has directly used such an approach to estimate

2In the following, matrices, vectors, and scalars are represented by italic
uppercase, bold lowercase, and italic letters, respectively. Subscripts are used
for three purposes. A subscript of an italic uppercase (or bold lowercase) letter
denotes the indice, for instance, of homography (the kth homography as Hk )
or that of xi (or vk in Sections II-D and E). An italic letter with a subscript
denotes one component of the associated vector, for instance, a1 for the first
component of the vector a. Ik denotes the k × k identity matrix. No explicit
explanation is added when the meaning of the subscript can be interpreted from
the context.

3If a3 = 0, we can select the first and third (or the second and third) columns
of [a]×, and (5) and (8)) should be modified accordingly.

the FM and homographies (jointly). (The above parameterization of (3)
and (4) was employed only to estimate a compatible homography given
the FM, or vice versa [10].) In any case, there are two significant issues
that we address here: optimally estimating the FM and homographies
in such a parameterization needs an elegant treatment of the objective
function (see Section II-E); moreover, one can work with a reduced
parameterization (see the next section).

C. Reduced Form

We now derive a reduced parameterization that leads to the improved
speed.

There is overparameterization in using A, e′, and v̄ to represent H
in (3) and F in (4). For example, A can take values given by

Aη = A + e′ηT (6)

with any choice of η ∈ R3 . Note that F = [e′]×Aη still holds when
Aη is used in place of A in (4) and that (3) should be then replaced
by H = Aη − e′(v̄ + η)T . For a particular choice of A, v̄ is uniquely
determined in (3).

For reducing (potentially) the computational complexity, the redun-
dancy in parameters should be reduced as much as possible.

Since F has a rank of two, it can be expressed as

F = [e′]×,2R (7)

where R ∈ R2 ,3 . From (4), (5), (7), and the fact that [e′]×,2 is of full-
column rank, it holds that

R =

[
1 0 −e′1/e′3
0 1 −e′2/e′3

]
A. (8)

By (8), R is determined from A. Equation (7) can be expressed as
F = [e′]×AF , where

AF =

[
R
0

]
.

Consequently, the homography is determined by a three-vector v

H =

[
R
0

]
− e′vT . (9)

H in (9) and F in (7) still satisfy (1).
There is still some redundancy in using (7) and (9) to represent F

and H . The FM has seven degrees of freedom (DOF) [10], and each
homography is determined by specification of an (additional) three-
vector. Thus, there are (7 + 3n)-DOF for the FM and n homographies.
However, there are 9 + 3n parameters in (7) and (9). The difference is
due to the fact that the size of both e′ and R is arbitrary. However, we
do not wish to impose explicit constraints (such as unit magnitude) as
such constraints complicate the optimization.

D. Calculation of R, e′, and {vk } from FM and Homographies

We calculate F and {Hk } from observed feature points and then
calculate R, e′, and {vk } from the coefficients of F and {Hk }.
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Fig. 1. Algorithm 1. Initial estimates of R, e′, and {vk } from F and {Hk }.

1) First, e′ is set to the left null vector of F (the left singular vector
with the least singular value, in practice).

2) Then, A can be determined from the FM or a homography. From
F , one choice of A is

AF =

[
R
0

]
where R can be calculated from (7). Alternatively, from Hk , one choice
of A is

Ak = (I3 − e′e′T )Hk . (10)

We compute A jointly from the FM and homographies. From (3) and
(6), the following quality is independent of the vector v̄ or η and,
consequently, is invariant, up to an unknown scale:

(I3 − e′e′T )Aη = (I3 − e′e′T )H = (I3 − e′e′T )A. (11)

Define
A′

F = (I3 − e′e′T )AF . (12)

The vectorization forms of {A′
F , Ak } lie in a one-dimension subspace.

In practice, A is calculated in the following way: Normalize each
of {A′

F , Ak }, and form a matrix by vectorizing {A′
F , Ak }; calculate

its left singular vector associated with the largest singular value; and
(finally) reorder this singular vector as the 3 × 3 matrix A.

3) R is calculated from (8), with A calculated above.
4) vk is calculated by (9).
These steps are summarized in Fig. 1.

E. Optimal Estimate of R, e′, and {vk }
The estimates of R, e′, and {vk }, by Algorithm 1 in Fig. 1, usually

have poor accuracy because the error in the FM and homography pa-
rameters is implicitly assumed to be independent identically distributed
(i.i.d.) Gaussian. In this section, starting from an initial estimate, we
use the LM algorithm to iteratively estimate (i.e., improve) R, e′, and
{vk }.

From (7) and (9), F and {Hk } can be calculated from R, e′, and
{vk }. Thus, in accordance with (2), the optimal solution of estimating
the FM and one or more homographies is to estimate the optimal R,
e′, and {vk }, as well as {x̂i} and {x̂′

i}, by minimizing the following
objective function:

Obj(R, e′, {vk }; {x̂i}, {x̂′
i}) =

∑
i

d2 (xi , x̂i ) + d2 (x′
i , x̂

′
i )

subject to ci (x̂i , x̂′
i ; R, e′, {vk }) = 0 (13)

where the constraint ci (x̂i , x̂′
i ; R, e′, {vk }) = 0 is either an epipolar

constraint or jointly an epipolar constraint and a homography constraint,
as described in (2).

In order to eliminate the nuisance parameters {x̂i} and {x̂′
i}, the

Sampson error [10], [20], [23], and [24] is used to replace the Euclidean
distance square in a 2-D image. It is a first-order approximation of the
Euclidean distance square.

The Sampson error is recommended for FM estimation in [24] be-
cause the computational burden is about 1/50th of that value when
the Euclidean distance square is minimized, while the performance
degradation is negligible when the Sampson error is minimized.

The Sampson error for the epipolar constraint [4], [10], and [24]
x̂′T

i F x̂i = 0 is

SF ,i =
(x′T

i Fxi )2

(Fxi )2
1 + (Fxi )2

2 + (F T x′
i )

2
1 + (F T x′

i )
2
2

(14)

where (Fxi )2
j denotes the square of the jth entry of the vector Fxi .

The Sampson error for the homography constraint [10] Hk x̂i ∼ x̂′
i

is
SH ,k ,i = εT

k ,i (Jk ,iJ
T
k ,i )

−1 εk ,i (15)

where εk ,i is a two-vector, i.e., the algebraic error of the ith match, and
Jk ,i is a 2 × 4 matrix, i.e., the partial derivative of εk ,i , with respect to
xk ,i and x′

k ,i . For more details (the derivation of Sampson error and
the definition of εk ,i and Jk ,i for homography estimation), see [10]
(also Appendix A for completeness.)

Here, care should be taken to minimize the Sampson-error approx-
imation described in (13), particularly for points on 3-D planes, i.e.,
points satisfying both the associated homography constraint and the
epipolar constraint. For such points [in the form of Sampson error in
(15)], the algebraic error ε is a three-vector, and J is a 3 × 4 matrix
(there are three constraints: one with the epipolar constraint and two
with the homography constraint). However, J has a rank of two. Conse-
quently, the 3 × 3 matrix JJT has a rank of two, and its inverse in (15)
does not make sense. This is caused by the fact that the homography
constraint implies the epipolar constraint when using the parameteriza-
tions described in (3, 4) or (7, 9).4 Particularly, the row of J , associated
with the epipolar constraint, is not independent of the other two rows
with the homography constraint. Thus, due to this dependence, ε and
J can be reduced, by ignoring the epipolar constraint, to a two-vector
and a 2 × 4 matrix, respectively (for points on 3-D planes), and the
Sampson error still takes the form in (15). For a point not on any plane,
the Sampson error takes the form in (14).

Thus, the optimization of (13) is reduced to an unconstrained opti-
mization problem

{R̂, ê′, {v̂k }} = arg min
R ,e ′ ,{vk }

( ∑
i /∈∪Ik

SF ,i +
∑

k

∑
i∈Ik

SH ,k ,i

)
(16)

where Ik is the index set of points that are on the kth plane. It should
be stressed that only the points not on any plane are included when
calculating the objective function of SF ,i in (16). (The reason for this is
proved in Appendix B.) Note that, in (16), only the principal parameters
of the FM and homography matrices (that is, R, e′, and {vk }) are to
be estimated.

Then, F and {Hk } are calculated from R̂, ê′, and {v̂k } by (7) and
(9). Such estimates of the FM and homography matrices satisfy the
compatibility condition (1).

4See the proof in Appendix B. Note that the points satisfying a homography
constraint will satisfy the related epipolar constraint if both the homography
and FM are noise-free. This also holds when the homography and FM are
compatible, as can be seen in Appendix B. However, it is not true, generally,
if there is error in their coefficients, for instance, the homography and FM are
separately estimated from noisy data.
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Fig. 2. Algorithm 2. Optimal estimates by the LM algorithm.

TABLE I
COMPUTATIONAL EFFICIENCY OBTAINED BY REPARAMETERIZING THE FM AND

HOMOGRAPHIES AS IN (7) AND (9), INSTEAD OF USING (3) AND (4). NOTE THAT

THE COMPUTATIONAL TIME OF USING (3) AND (4) IS REGARDED AS A UNIT

The initial R0 , e′0 , and {v0
k } are calculated, by Algorithm 1 in

Fig. 1, from F and {Hk }, which are estimated by the normalized
eight-point algorithm or normalized direct linear transformation (DLT)
algorithm [10]. The approach is summarized in Fig. 2.

F. DOF and Complexity

3n + 12 parameters are used to represent the FM and n homogra-
phies in (3) and (4) and 3n + 9 parameters in (7) and (9), which is
difference (improvement) of 3 DOF. Since only a few planes (of sig-
nificant size) are observed in both views in common situations, the
implications of this (at first sight small change) are not negligible.

The main computational burden of the LM algorithm lies in calculat-
ing the Jacobian matrix and solving the augmented normal equations,
whose size is the number of parameters. The complexity of solving
a linear equation Mx = b, with M ∈ Rm ,m is of O(m3 ) [8]. The
calculation of the Jacobian matrix mainly consists of matrix–vector
multiplications and matrix additions. It has an complexity of O(m2 ).
However, the improvement of computational efficiency, in practice, is
not exactly as expected above because the algorithm shares some part
of the computations whether it uses (7, 9) or (3, 4). See, for example,
in Table I, the computational time of Algorithm 2 when using (7) and
(9), where that of using (3) and (4) is regarded as a unit.

III. EXPERIMENTS

We compare the proposed Algorithm 2, in Fig. 2 (referred
to as SIMU5), with the two other methods: LM and normalized
DLT/normalized eight-point. The LM method refers to separately esti-
mating the FM or homographies by the LM algorithm. The normalized
DLT/normalized eight point refers to the normalized DLT (or the nor-
malized eight-point algorithm) of estimating the homography (or the
FM, respectively).

A. Simulation

We conduct simulations on cases where one, two, three, or four
planes are observed.

Experimental setting
1) Feature points: The camera matrices and 3-D points are randomly

generated. Each plane has 20 3-D points, and another extra 20
3-D points are randomly generated. When generating 3-D points,
the process is carried out in such a way that ensures that these

5The Matlab code is available at http://sist.sysu.edu.cn/∼chenpei.

points are visible (not obscured by the planes). The image points
are scaled to be in the region of (−256 ∼ 256,−256 ∼ 256).

2) Noise: Zero-mean i.i.d. Gaussian noise is added to 2-D points: σ
varies from 0.5 to 2.5.

3) Performance evaluation of Ĥ: We use the following reprojection
error as the index for evaluating the estimated homography Ĥ :√∑p

i=1 d2 (x̄′
i , Ĥ x̄i )

p
(17)

where x̄ denotes for the ground truth of x. Note that the ground
truth homography has an error of zero.

4) Performance evaluation of F̂ : In evaluating the estimated F̂ , we
use the following index by measuring its difference from the
ground truth:√√√√∑p

i=1
( x̄ ′T

i
F̂ x̄ i )2

(F̂ x̄ i )2
1 + (F̂ x̄ i )2

2
+

( x̄ ′T
i

F̂ x̄ i )2

(F̂ T x̄ ′
i
)2
1 + (F̂ T x̄ ′

i
)2
2

2p
. (18)

Note that this is approximately the distance (in pixels) between
the two FMs, which has been introduced in [23]. Also note that
the ground truth FM has an error of zero.

5) Statistics: We repeat this 100 times for each noise level σ.
From Fig. 3, two main conclusions can be drawn. First, the SIMU

performs best. Second, as far as the homography is concerned, the
quality of the estimates by the SIMU improves as the number of planes
increases, compared with the other two methods. This phenomenon
should be useful in homography-related robot tasks [2], [16].

B. Real Example

In this section, we show a real example on the corridor sequence [1].
The corridor sequence consists of 11 frames and 737 feature points.
RANdom SAmple Consensus (RANSAC) [7] is used to detect three
planes, each with 109/70/42 features. Initially, the fourth and fifth
views are used in our experiment, with the purpose of illustration.
Then, all pairs (C2

11 = 55) between 11 frames are used to get statistics
for comparison.

On this corridor example, we evaluate algorithms in terms of the
accuracy of the FM. The calibrated projection matrices are available
at [1], and consequently, the calibrated FM (referred to as CALI) can be
calculated directly from these projection matrices [10]. The normalized
eight-point algorithm is referred to as NORM.

The distance (in pixels) between two FMs, introduced in [23], is used
to evaluate three estimates, which measures the difference between two
pencils of epipolar lines defined by the two FMs. It is zero, if two
matrices are equal (up to a scale). See [23] for more details.

In the case between the fourth and fifth views, the distances between
four FMs are given in Table II. The most meaningful index for compar-
ison is the distance between the estimated FM and the calibrated one
(assumed to be the ground truth), which is 0.7270, 1.3982, and 3.5602
pixels, for the SIMU, LM, and NORM methods, respectively.

The estimated epipoles by three methods, with two epipolar lines for
each epipole, are shown in Fig. 4 (with the CALI as the ground truth).
The Euclidean distances of the estimated epipoles (by the SIMU, LM,
and NORM) from the calibrated epipole (CALI) are 0.5232, 1.3065, and
2.4146 pixels, respectively. (Note that the distance (in pixels) between
FMs is a more reliable index for comparison than the Euclidean distance
between epipoles, because the epipole is the null vector of the FM, and
the other information in the FM is discarded.)

The statistics calculated from all the 55 frame pairs are then calcu-
lated. Table III shows the mean values (with the variance in the bracket)
of the distances between the four FMs. The Euclidean distances of the
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Fig. 3. (Top row) Errors of the estimated homographies and (middle) FM, where the first/second/third columns correspond to the cases of one/two/three planes,
respectively. (Bottom) The four-plane case is listed as two subfigures. (Left) Homography. (Right) FM.

TABLE II
DISTANCES IN PIXELS BETWEEN THE ESTIMATED FMS AND

THE CALIBRATED (“GROUND TRUTH”) ONE FOR THE

CASE BETWEEN THE FOURTH AND FIFTH VIEWS

estimated epipoles (by the SIMU, LM, and NORM) from the calibrated
epipole are 2.7301(4.8439), 3.0088(7.9934), and 3.9017(8.5121) pix-
els, respectively.

Thus, it can be seen that the SIMU performs the best on this corri-
dor example, either evaluated by the distance (in pixels) between the
estimated FMs and the calibrated FM or evaluated by the Euclidean
distances between the estimated epipoles and the calibrated epipole.

Fig. 4. Epipoles estimated by the three methods and the calibrated epipole for
the case between the fourth and fifth views. (Note the different scales between
the abscissa and ordinate axes.)
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TABLE III
MEAN VALUES OF THE DISTANCES IN PIXELS BETWEEN THE ESTIMATED FMS

AND THE CALIBRATED (“GROUND TRUTH”) ONE FOR ALL 55 PAIRS. THEIR

VARIANCES ARE IN THE BRACKETS

IV. CONCLUSION

In this paper, we propose a method for simultaneously estimating the
FM and homographies that are compatible with each other. Simulations
and a real example show that the proposed algorithm produces better
estimates, compared with the method of separately estimating them.
The proposed method will be useful in robot tasks, particularly such as
the homography-related tasks [2], [16].

APPENDIX A

SAMPSON ERROR FOR HOMOGRAPHY ESTIMATION

For a homography H , a pair of match xi and x′
i on the associated

plane satisfies the homography constraint Hxi ∼ x′
i . In the form of a

cross product, the homography constraint is

[x′
i ]×Hxi = 0. (19)

Furthermore, the homography constraint (19) can be expressed as, in
Kronecker product

(xT
i ⊗ [x′

i ]×) vec(H) = 0 (20)

where ⊗ denotes the Kronecker product, and vec(H) denotes the
column-first vectorization of the matrix H . Because the 3 × 9 ma-
trix xT

i ⊗ [x′
i ]× is row dependent, the third equation is usually omitted.

The homography constraint (19) becomes

(xT
i ⊗ [x′

i ]2 ,×)vec(H) = 0 (21)

where [x]2 ,× denotes a 2 × 3 matrix, taking the first two rows of [x]×.
When noisy points are observed, the homography constraint (19)

or (21) does not exactly hold. The algebraic error is defined as a
two-vector

εi = (xT
i ⊗ [x′

i ]2 ,×) vec(H) (22)

Ji is a 2 × 4 matrix, which is defined as the partial derivative of εi ,
with respect to xi and x′

i (exactly, the x and y coordinates of the 2-D
inhomogeneous points, which are represented by xi and x′

i .)
The Sampson error is defined as

εT
i (JiJ

T
i )−1 εi (23)

APPENDIX B

PROOF THAT THE HOMOGRAPHY CONSTRAINT IMPLIES

THE EPIPOLAR CONSTRAINT WHEN USING THE PARAMETERIZATIONS

IN (3, 4) OR (7, 9)

Here, we only prove the case of using the parameterizations in
(3, 4) because the case of using (7, 9) is a special case of those in terms
of (3, 4).

Suppose that F and H are represented as (3) and (4). From the
homography constraint, we have

Hx ∼ x′ ⇒ [x′]×Hx = 0 ⇒ [x′]×Ax = [x′]×e′v̄T x (24)

Substituting the last equality above into x′T Fx, we have

x′T Fx = x′T [e′]×Ax = −e′T [x′]×Ax

= −e′T [x′]×e′v̄T x = e′T [e′]×x′v̄T x

= 0. (25)

This is the epipolar constraint. Note that in (25), we use the following
properties: a × b = [a]×b = −[b]×a, a × a = 0, and [a]× is a skew-
symmetric matrix, where a and b are three vectors.
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Abstract—This paper deals with vision-based localization for leader–
follower formation control. Each unicycle robot is equipped with a
panoramic camera that only provides the view angle to the other robots.
The localization problem is studied using a new observability condition
valid for general nonlinear systems and based on the extended output
Jacobian. This allows us to identify those robot motions that preserve the
system observability and those that render it nonobservable. The state of
the leader–follower system is estimated via the extended Kalman filter, and
an input-state feedback control law is designed to stabilize the formation.
Simulations and real-data experiments confirm the theoretical results and
show the effectiveness of the proposed formation control.

Index Terms—Feedback linearization, formation control, mobile robots,
nonlinear observability, panoramic cameras.

I. INTRODUCTION

A. Motivation and Related Work

A growing interest in coordination and control of multiple au-
tonomous agents has matured over the past few years [7], [12], [22],
[27], [28]. The formation control problem has been playing an impor-
tant role in this research area, giving rise to a rich literature [2], [15],
[17], [30], [31]. By formation control, we simply mean the problem of
controlling the relative position and orientation of group of robots while
allowing the group to move as a whole. In the leader–follower forma-
tion control approach, a robot, i.e., the leader, moves along a predefined
trajectory, while the other robots, i.e., the followers, are supposed to
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